三角级数 第2卷 第3版PDF电子书下载
- 电子书积分:13 积分如何计算积分?
- 作 者:吉格曼
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2016
- ISBN:7519209971
- 页数:364 页
CHAPTER Ⅹ TRIGONOMETRIC INTERPOLATION 1
1.General remarks 1
2.Interpolating polynomials as Fourier series 6
3.The case of an even number of fundamental points 8
4.Fourier-Lagrange coefficients 14
5.Convergence of interpolating polynomials 16
6.Jackson polynomials and related topics 21
7.Mean convergence of interpolating polynomials 27
8.Divergence ofinterpolating polynomials 35
9.Divergence of interpolating polynomials(cont.) 44
10.Polynomials conjugate to interpolating polynomials 48
Miscellaneous theorems and examples 55
CHAPTER Ⅺ DIFFERENTIATION OF SERIES.GENERALIZED DERIVATIVES 55
1.Cesàro summability of differentiated series 59
2.Summability C of Fourier series 65
3.A theorem on differentiated series 71
4.Theorems on generalized derivatives 73
5.Applications of Theorem(4·2)to Fourier series 80
6.The integral M and Fourier series 83
7.The integral M2 86
Miscellaneous theorems and examples 91
CHAPTER Ⅻ INTERPOLATION OF LINEAR OPERATIONS.MORE ABOUT FOURIER COEFFICIENTS 91
1.The Riesz-Thorin theorem 93
2.The theorems of Hausdorff-Young and F.Riesz 101
3.Interpolation of operations in the classes Hr 105
4.Marcinkiewicz's theorem on the interpolation of operations 111
5.Paley's theorems on Fourier coefficients 120
6.Theorems of Hardy and Littlewood about rearrangements of Fourier coefficients 127
7.Lacunary coefficients 131
8.Fractional integration 133
9.Fractional integration(cont.) 138
10.Fourier-Stieltjes coefficients 142
11.Fourier-Stieltjes coefficients and sets of constant ratio of dissection 147
Miscellaneous theorems and examples 156
CHAPTER ⅩⅢ CONVERGENCE AND SUMMABILITY ALMOST EVERYWHERE 156
1.Partial sums of S[f]for f∈L2 161
2.Order of magnitude of Sn for f∈Lp 166
3.A test for the convergence of S[f]almost everywhere 170
4.Majorants for the partial sums of S[f]and ?[f] 173
5.Behaviour of the partial sums of S[f]and ?[f] 175
6.Theorems on the partial sums of power sories 178
7.Strong summability of Fourier series.The case f∈Lr,r>1 180
8.Strong summability of S[f]and ?[f]in the general case 184
9.Almost convergence of S[f]and ?[f] 188
10.Theorems on the convergence of orthogonal series 189
11.Capacity of sets and convergence of Fourier series 194
Miscellaneous theorems and examples 197
CHAPTER ⅩⅣ MORE ABOUT COMPLEX METHODS 199
1.Boundary behaviour of harmonic and analytic functions 199
2.The function s(θ) 207
3.The Littlewood-Paley function g(θ) 210
4.Convergence of conjugate series 216
5.The Marcinkiewicz functionμ(θ) 219
Miscellaneous theorems and examples 221
CHAPTER ⅩⅤ APPLICATIONS OF THE LITTLEWOOD-PALEY FUNCTION TO FOURIER SERIES 221
1.General remarks 222
2.Functions in Lr,l<r<∞ 224
3.Functions in Lr,l<r<∞(cont.) 229
4.Theorems on the partial sums of S[f],f∈Lr,l<r<∞ 230
5.The limiting case r=l 234
6.The limiting case r=∞ 239
CHAPTER ⅩⅥ FOURIER INTEGRALS 242
1.General remarks 242
2.Fourier transforms 246
3.Fourier transforms(cont.) 254
4.Fourier-Stieltjes transforms 258
5.Applications to trigonometric series 263
6.Applications to trigonometric series(cont.) 269
7.The Paley-Wiener theorem 272
8.Riemann theory of trigonometric integrals 278
9.Equiconvergence theorems 286
10.Problems of uniqueness 291
Miscellaneous theorems and examples 297
CHAPTER ⅩⅦ A TOPIC IN MULTIPLE FOURIER SERIES 300
1.General remarks 300
2.Strong differentiability of multiple integrals and its applications 305
3.Restricted summability of Fourier series 309
4.Power series of several variables 315
5.Power series of several variables(cont.) 321
Miscellaneous theorems and examples 328
Notes 331
Bibtiography 336
Index 353
- 《傅立叶级数和边值问题 英文》(美)詹姆斯·沃德·布朗,(美)卢埃尔·V.丘吉尔著 2019
- 《常微分方程与无穷级数》北京大学数学力学系高等数学教材编写组编 1978
- 《三角级数论 上》陈建功著 1964
- 《应用数学例题演习 4 向量·Fourier级数·Fourier积分·Laplace变换·特殊函数》(日)道胁义正等著;郑毓德,陈文英译 1994
- 《高等数学基础 一元函数微积分与无穷级数》王绵森,马知恩主编 2004
- 《高等数学典型例题与解法 下 多元函数微积分、无穷级数与常微分方程、应试模拟》朱健民,李建平,敖武峰编著 2003
- 《无穷级数与连分数》高建福著 2005
- 《微积分之倚天宝剑 打遍泰勒级数、多重积分、偏导数、向量微积分》(美)C.亚当斯(Colin Adams),(美)J.哈斯(Joel Hass),(美)A.汤普森(Abigail Thompson)著;张菽译 2005
- 《高等数学解题指引与同步练习 10 无穷级数》曾令武,吴满编著 2008
- 《直交函数级数的和》陈建功著 2010
- 《隐秘权力》南希·吉伯斯 2020
- 《因为我是如此爱你》姜璐责任编辑;(荷)米勒贾·普拉格曼 2019
- 《拥抱时间的人》(美)莉萨·吉诺瓦,白马时光出品 2019
- 《被偷走的女孩》(爱尔兰)帕特里夏·吉布尼(Patricia Gibney)著 2020
- 《宁国府志 上》洪亮吉,凌廷堪,宣城市地方志办公室 2007
- 《宁国府志 下》洪亮吉,凌廷堪,宣城市地方志办公室 2007
- 《设计工具与表现》(日)清水吉治著 2019
- 《我有弱点,可我并不软弱》王振杰责任编辑;周湛译;(美)彼得·布雷格曼 2019
- 《川西北高原常见观赏植物集锦》贾国夫,樊华,赵文吉主编 2019
- 《100种创意搞定手绘POP》简仁吉编绘 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017