当前位置:首页 > 数理化
利率衍生物定价的有效方法  英文
利率衍生物定价的有效方法  英文

利率衍生物定价的有效方法 英文PDF电子书下载

数理化

  • 电子书积分:9 积分如何计算积分?
  • 作 者:(荷)佩尔森(PelsserA.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2013
  • ISBN:9787510058394
  • 页数:172 页
图书介绍:本书是一部全面讲述计算和管理利率衍生物模型的教程。分为两个部分:第一部分比较和讨论了传统模型,比如即期和远期利率模型;第二部分主要讲述最新发展起来的市场模型。本书和同时期众多图书的不同之处在于,不仅专注于数学知识,并大量刻画了作者在工业应用中的实践经验。目次:导引;套汇、鞅和数值方法;(一)即期和远期利率模型:即期和远期利率模型;基础解和远期风险调节策略;Hull—White模型;平方高斯模型;单因子模型的经验比较;(二)市场利率模型:LIBOR和调剂市场模型;马尔科夫函数模型;市场模型的经。
《利率衍生物定价的有效方法 英文》目录

1.Introduction 1

2.Arbitrage,Martingales and Numerical Methods 5

2.1 Arbitrage and Martingales 6

2.1.1 Basic Setup 6

2.1.2 Equivalent Martingale Measure 8

2.1.3 Change of Numeraire Theorem 10

2.1.4 Girsanov's Theorem and It?'s Lemma 11

2.1.5 Application:Black-Scholes Model 12

2.1.6 Application:Foreign-Exchange Options 14

2.2 Numerical Methods 16

2.2.1 Derivation of Black-Scholes Partial Differential Equation 16

2.2.2 Feynman-Kac Formula 17

2.2.3 Numerical Solution of PDE's 18

2.2.4 Monte Carlo Simulation 18

2.2.5 Numerical Integration 20

Part Ⅰ.Spot and Forward Rate Models 23

3.Spot and Forward Rate Models 23

3.1 Vasicek Methodology 23

3.1.1 Spot Interest Rate 23

3.1.2 Partial Differential Equation 24

3.1.3 Calculating Prices 25

3.1.4 Example:Ho-Lee Model 26

3.2 Heath-Jarrow-Morton Methodology 27

3.2.1 Forward Rates 27

3.2.2 Equivalent Martingale Measure 28

3.2.3 Calculating Prices 29

3.2.4 Example:Ho-Lee Model 30

3.3 Equivalence of the Methodologies 30

4.Fundamental Solutions and the Forward-Risk-Adjusted Measure 31

4.1 Forward-Risk-Adjusted Measure 32

4.2 Fundamental Solutions 34

4.3 Obtaining Fundamental Solutions 36

4.4 Example:Ho-Lee Model 37

4.4.1 Radon-Nikodym Derivative 37

4.4.2 Fundamental Solutions 38

4.5 Fundamental Solutions for Normal Models 40

5.The Hull-White Model 45

5.1 Spot Rate Process 46

5.1.1 Partial Differential Equation 47

5.1.2 Transformation of Variables 47

5.2 Analytical Formul? 48

5.2.1 Fundamental Solutions 49

5.2.2 Option Prices 50

5.2.3 Prices for Other Instruments 51

5.3 Implementation of the Model 52

5.3.1 Fitting the Model to the Initial Tern-Structure 52

5.3.2 Transformation of Variables 53

5.3.3 Trinomial Tree 53

5.4 Performance of the Algorithm 55

5.5 Appendix 57

6.The Squared Gaussian Model 59

6.1 Spot Rate Process 60

6.1.1 Partial Differential Equation 60

6.2 Analytical Formul? 61

6.2.1 Fundamental Solutions 62

6.2.2 Option Prices 63

6.3 Implementation of the Model 64

6.3.1 Fitting the Model to the Initial Term-Structure 64

6.3.2Trinomial Tree 66

6.4 Appendix A 66

6.5 Appendix B 69

7.An Empirical Comparison of One-Factor Models 71

7.1 Yield-Curve Models 72

7.2 Econometric Approach 74

7.3 Data 77

7.4 Empirical Results 77

7.5 Conclusions 84

Part Ⅱ.Market Rate Models 87

8.LIBOR and Swap Market Models 87

8.1 LIBOR Market Models 88

8.1.1 LIBOR Process 88

8.1.2 Caplet Price 89

8.1.3 Terminal Measure 90

8.2 Swap Market Models 91

8.2.1 Interest Rate Swaps 92

8.2.2 Swaption Price 93

8.2.3 Terminal Measure 95

8.2.4 T1-Forward Measure 96

8.3 Monte Carlo Simulation for LIBOR Market Models 97

8.3.1 Calculating the Numeraire Rebased Payoff 98

8.3.2 Example:Vanilla Cap 99

8.3.3 Discrete Barrier Caps/Floors 100

8.3.4 Discrete Barrier Digital Caps/Floors 102

8.3.5 Payment Stream 103

8.3.6 Ratchets 103

8.4 Monte Carlo Simulation for Swap Market Models 104

8.4.1 Terminal Measure 104

8.4.2 T1-Forward Measure 105

8.4.3 Example:Spread Option 106

9. Markov-Functional Models 109

9.1 Basic Assumptions 110

9.2 LIBOR Markov-Functional Model 111

9.3 Swap Markov-Functional Model 114

9.4 Numerical Implementation 115

9.4.1 Numerical Integration 115

9.4.2 Non-Parametric Implementation 117

9.4.3 Semi-Parametric Implementation 118

9.5 Forward Volatilities and Auto-Correlation 120

9.5.1 Mean-Reversion and Auto-Correlation 120

9.5.2 Auto-Correlation and the Volatility Function 121

9.6 LIBOR Example:Barrier Caps 121

9.6.1 Numerical Calculation 121

9.6.2 Comparison with LIBOR Market Model 123

9.6.3 Impact of Mean-Reversion 124

9.7 LIBOR Example:Chooser-and Auto-Caps 125

9.7.1 Auto-Caps/Floors 125

9.7.2 Chooser-Caps/Floors 125

9.7.3 Auto-and Chooser-Digitals 125

9.7.4 Numerical Implementation 125

9.8 Swap Example:Bermudan Swaptions 127

9.8.1 Early Notification 127

9.8.2 Comparison Between Models 128

10.An Empirical Comparison of Market Models 131

10.1 Data Description 132

10.2 LIBOR Market Model 132

10.2.1 Calibration Methodology 132

10.2.2 Estimation and Pricing Results 134

10.3 Swap Market Model 135

10.3.1 Calibration Methodology 135

10.3.2 Estimation and Pricing Results 135

10.4 Conclusion 136

11.Convexity Correction 139

11.1 Convexity Correction and Change of Numeraire 140

11.1.1 Multi-Currency Change of Numeraire Theorem 140

11.1.2 Convexity Correction 142

11.2 Options on Convexity Corrected Rates 145

11.2.1 Option Price Formula 146

11.2.2 Digital Price Formula 147

11.3 Single Index Products 147

11.3.1 LIBOR in Arrears 147

11.3.2 Constant Maturity Swap 149

11.3.3 Diffed LIBOR 150

11.3.4 Diffed CMS 150

11.4 Multi-Index Products 151

11.4.1 Rate Based Spread Options 151

11.4.2 Spread Digital 153

11.4.3 Other Multi-Index Products 153

11.4.4 Comparison with Market Models 154

11.5 A Warning on Convexity Correction 155

11.6 Appendix:Linear Swap Rate Model 156

12.Extensions and Further Developments 159

12.1 General Philosophy 159

12.2 Multi-Factor Models 160

12.3 Volatility Skews 161

References 163

Index 167

返回顶部