当前位置:首页 > 医药卫生
医学高等数学  第3版
医学高等数学  第3版

医学高等数学 第3版PDF电子书下载

医药卫生

  • 电子书积分:11 积分如何计算积分?
  • 作 者:马建忠主编
  • 出 版 社:北京:科学出版社
  • 出版年份:2013
  • ISBN:9787030382078
  • 页数:290 页
图书介绍:本书依据普通高等医药院校数学教学要求编写而成,书中讲述了微积分、常微分方程、概率论及线性代数等方面的基础知识,重点突出了基本概念、基本理论和数学方法,书中结合具体的医药学问题给出了例题和习题,并介绍了借助计算机工具,用数学方法处理医学实际问题。
《医学高等数学 第3版》目录

第一章 函数、极限与连续 1

1.1 函数 1

1.1.1 函数的概念 1

1.1.2 函数的特性 2

1.1.3 初等函数 5

1.1.4 分段函数和反函数 9

1.2 函数的极限 10

1.2.1 数列极限 10

1.2.2 函数极限 12

1.2.3 无穷小量 14

1.2.4 极限的运算 16

1.2.5 无穷小量的比较 20

1.2.6 用Matlab软件观察极限动态变化趋势 20

1.3 函数的连续性 21

1.3.1 函数的连续性 21

1.3.2 间断点 23

1.3.3 初等函数的连续性 24

1.3.4 闭区间上连续函数的性质 25

小结 26

习题 27

第二章 一元函数微分学 31

2.1 导数的概念 31

2.1.1 两个变化率问题 31

2.1.2 导数的定义 32

2.1.3 导数的几何意义 34

2.1.4 函数的连续性与可导性的关系 34

2.2 导数的运算 35

2.2.1 几个基本初等函数的导数 35

2.2.2 导数的四则运算法则 36

2.2.3 复合函数和隐函数求导法 38

2.2.4 对数求导法 40

2.2.5 反函数求导法 41

2.2.6 高阶导数 42

2.3 微分 43

2.3.1 微分的定义 44

2.3.2 微分的几何意义 44

2.3.3 微分的计算 45

2.3.4 微分在误差估计、近似计算及医学中的应用 45

2.4 导数的应用 47

2.4.1 拉格朗日中值定理 47

2.4.2 洛必达(L’Hospital)法则 49

2.4.3 函数增减性和函数的极值及医学应用 51

2.4.4 函数的凹凸性及拐点 58

2.4.5 几个医学常用函数图形的描绘 61

2.4.6 Matlab软件作平面函数图形 65

小结 65

习题 65

第三章 一元函数积分学 70

3.1 不定积分 70

3.1.1 不定积分的概念 70

3.1.2 不定积分的基本公式和运算法则 72

3.2 不定积分的计算 75

3.2.1 换元积分法 75

3.2.2 分部积分法 79

3.2.3 有理函数积分简介 81

3.2.4 积分表的使用 83

3.3 定积分 84

3.3.1 定积分的概念 84

3.3.2 定积分的性质 88

3.4 定积分的计算 90

3.4.1 微积分基本定理 90

3.4.2 定积分的换元积分法 92

3.4.3 定积分的分部积分法 94

3.4.4 定积分在医药学等自然科学中的应用 96

3.5 广义积分 103

3.5.1 无穷区间上的广义积分 103

3.5.2 无界函数的广义积分 104

小结 106

习题 106

第四章 多元函数微分学 114

4.1 多元函数、极限与连续 114

4.1.1 空间解析几何简介 114

4.1.2 多元函数概念 120

4.1.3 二元函数的极限与连续 122

4.2 偏导数与全微分 124

4.2.1 偏导数及其医药学应用 124

4.2.2 全微分 126

4.2.3 高阶偏导数 128

4.3 多元复合函数的求导法则 129

4.3.1 复合函数的求导法则 129

4.3.2 隐函数的求导法则 132

4.4 多元函数的极值 133

4.4.1 二元函数极值定义 133

4.4.2 二元函数的极值定理 134

4.4.3 求无约束条件极值的方法及其医药等方面的应用 134

4.4.4 求有约束条件的极值方法及其医药等方面的应用 136

小结 137

习题 138

第五章 多元函数积分学 142

5.1 二重积分的概念和性质 142

5.1.1 二重积分的概念 142

5.1.2 二重积分的性质 145

5.2 二重积分的计算 146

5.2.1 在直角坐标系下二重积分的计算 147

5.2.2 在极坐标系下二重积分的计算 153

5.3 二重积分的简单应用 156

5.3.1 几何和医药上的应用 156

5.3.2 物理及力学上的应用 158

小结 161

习题 162

第六章 常微分方程 165

6.1 微分方程的基本概念 165

6.2 一阶微分方程及其医药学应用 167

6.2.1 可分离变量的微分方程 167

6.2.2 一阶线性微分方程 172

6.3 二阶微分方程 177

6.3.1 几种可降阶的二阶微分方程 177

6.3.2 二阶线性常系数齐次方程及其医学应用 180

6.4 用Matlab软件解二阶常系数非齐次微分方程 184

小结 185

习题 185

第七章 概率论基础及其医药学应用 189

7.1 随机事件及其概率 189

7.1.1 随机事件 189

7.1.2 事件关系及运算 190

7.1.3 随机事件的概率 192

7.2 概率基本运算法则及其应用 194

7.2.1 概率的加法定理 194

7.2.2 条件概率和乘法公式 196

7.2.3 事件的独立性 197

7.2.4 全概率公式与贝叶斯公式及其医学诊断 199

7.3 随机变量及其概率分布 202

7.3.1 随机变量 202

7.3.2 离散型随机变量的概率分布和连续型随机变量的概率密度函数 203

7.3.3 随机变量的分布函数 207

7.3.4 五种常见的随机变量分布 209

7.4 随机变量的数字特征 216

7.4.1 随机变量的数学期望及其性质 216

7.4.2 随机变量的方差及其性质 219

7.5 大数定律和中心极限定理 224

7.5.1 大数定律 224

7.5.2 中心极限定理 224

小结 225

习题 225

第八章 线性代数初步 230

8.1 行列式及其医学应用 230

8.1.1 行列式的概念和计算 230

8.1.2 行列式的性质与计算 234

8.1.3 用克兰姆(Cramer)法则解线性方程组及其医学应用 237

8.2 矩阵 239

8.2.1 矩阵的概念 239

8.2.2 矩阵的运算及其医学应用 241

8.2.3 矩阵的逆 247

8.3 矩阵的初等变换与线性方程组及其医学应用 249

8.3.1 矩阵的秩和初等变换 249

8.3.2 利用初等变换求逆矩阵 251

8.3.3 矩阵的初等行变换与线性方程组 252

8.3.4 用Matlab软件解线性方程组 256

8.4 矩阵的特征值与特征向量 257

8.4.1 矩阵的特征值与特征向量 257

8.4.2 用Matlab软件求特征值和特征向量 259

小结 260

习题 260

附录 265

Ⅰ.简单不定积分表 265

Ⅱ.希腊字母表 273

Ⅲ.泊松分布表 273

Ⅳ.标准正态分布表 279

Ⅴ.常见三角公式提示 280

Ⅵ.Matlab中的运行环境和变量运算简介 281

习题参考答案 283

相关图书
作者其它书籍
返回顶部