数学奥林匹克英文版系列 数学奥林匹克在中国PDF电子书下载
- 电子书积分:13 积分如何计算积分?
- 作 者:刘培杰主编;欧阳维诚,叶思源,冯海晴副主编
- 出 版 社:哈尔滨:哈尔滨工业大学出版社
- 出版年份:2014
- ISBN:7560346854
- 页数:396 页
Chapter 1 Mathematical Olympiad in China 1
1.1 International Mathematical Olympiad(IMO)and China Mathematical Contest—Written before the 31st IMO 1
1.1.1 A Brief Introduction to IMO 2
1.1.2 A Historic Review of China Mathematical Contest 4
1.1.3 Activities of China in the IMO and the 31st IMO 6
Chapter 2 Olympiad's Mathematics 8
2.1 The Application of Projective Geometry Methods to Problem Proving in Geometry 8
2.1.1 A Few Concepts in Projective Geometry 10
2.1.2 Some Examples 15
2.1.3 Exercises 22
2.2 A Conjecture Concerning Six Points in a Square 24
2.3 Modulo-Period Sequence of Numbers 33
2.3.1 Basic Concepts 33
2.3.2 Pure Modulo-period Sequence 39
2.3.3 The Periodicity of Sum Sequence 44
2.3.4 The Relation between the Period and the Initial Terms 47
2.4 Iteration of Fractional Linear Function and Consturction of a Class of Function Equation 49
2.5 Remarks Initiating from a Putnam Mathematics Competition Problem 55
2.5.1 Introductory Remarks 55
2.5.2 The Proof of the Problem 56
2.5.3 Reinforcing the Promble 57
2.5.4 Application 60
2.5.5 Mutually Supplementary Sequences and Reversible Sequences 64
2.6 The Ways of Finding the Best Choise Point 67
2.6.1 The Congruent Transformation of Figures 67
2.6.2 Similarity Transformation of Figures 69
2.6.3 Partial Adjusting Method 70
2.6.4 The Contour Line Method 73
2.6.5 Algebraic Method 75
2.6.6 Trigonometrical Method 77
2.6.7 Analytic Method 78
2.6.8 Solution by Fermat Point Theorem 79
2.6.9 The Area Method 80
2.6.10 Physical Method 81
2.7 The Formulas and Inequalities for the Volumes of n-Simplex 84
2.8 The Polynomial of Inverse Root and Its Transformation 100
2.8.1 The Extension of an IMO Problem 100
2.8.2 The Inverse Root Polynomial 102
2.8.3 Trigonometric Formula of Recurrence Type 105
2.8.4 Inverse Root Polynomial Transformation 108
Chapter 3 Suggestions and Answers of Problems 116
3.1 Remarks on Proposing Problems for Mathematics Competition 116
3.2 A Problem of IMO and a Useful Polynomial 131
3.2.1 Introduction 131
3.2.2 The Proof of the Problem 132
3.2.3 Some Properties of Fm(x) 135
3.2.4 Fm(x)and Some IMO Problems 138
3.2.5 An Existence Problem 142
3.3 Preliminary Approach to Methods of Proposing Mathematics Competition Problems 144
3.3.1 Introduction 145
3.3.2 Form Changing 148
3.3.3 Generalization 151
3.3.4 Construction 156
Chapter 4 Comment on the Exam Paper of Mathematical Olympiad Winter Camp in China 159
4.1 Comment on the Exam Paper of the First Mathematical Winter Camp(1986) 159
4.2 Comment on the Exam Paper of the Second Mathematical Winter Camp(1987) 172
4.3 Comment on the Exam Paper of the Third Mathematical Winter Camp(1988) 178
4.4 Comment on the Exam Paper of the Fourth Mathematical Winter Camp(1989) 183
4.5 Comment on the Exam Paper of the Fifth Mathematical Winter Camp(1990) 192
Chapter 5 China Mathematical Olympiad from the First to the Lastest 205
5.1 China Mathematical Olympiad(1991) 205
5.2 China Mathematical Olympiad(1992) 212
5.3 China Mathematical Olympiad(1993) 220
5.4 China Mathematical Olympiad(1994) 225
5.5 China Mathematical Olympiad(1995) 235
5.6 China Mathematical Olympiad(1996) 241
5.7 China Mathematical Olympiad(1997) 247
5.8 China Mathematical Olympiad(1998) 258
5.9 China Mathematical Olympiad(1999) 265
5.10 China Mathematical Olympiad(2000) 275
5.11 China Mathematical Olympiad(2001) 282
5.12 China Mathematical Olympiad(2002) 293
5.13 China Mathematical Olympiad(2003) 304
5.14 China Mathematical Olympiad(2004) 316
5.15 China Mathematical Olympiad(2005) 323
5.16 China Mathematical Olympiad(2006) 333
5.17 China Mathematical Olympiad(2007) 342
5.18 China Mathematical Olympiad(2008) 351
5.19 China Mathematical Olympiad(2009) 360
5.20 China Mathematical Olympiad(2010) 369
5.21 China Mathematical Olympiad(2011) 375
5.22 China Mathematical Olympiad(2012) 381
5.23 China Mathematical Olympiad(2013) 388
- 《MBA大师.2020年MBAMPAMPAcc管理类联考专用辅导教材 数学考点精讲》(中国)董璞 2019
- 《2013数学奥林匹克试题集锦 走向IMO》2013年IMO中国国家集训队教练组编 2013
- 《一个数学家的辩白》(英)哈代(G.H.Hardy)著;李文林,戴宗铎,高嵘译 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《AutoCAD 2018自学视频教程 标准版 中文版》CAD/CAM/CAE技术联盟 2019
- 《高等数学 上》东华大学应用数学系编 2019
- 《跟孩子一起看图学英文》张紫颖著 2019
- 《聋校义务教育实验教科书教师教学用书 数学 一年级 上》人民教育出版社,课程教材研究所,小学数学课程教材研究中心编著 2017