当前位置:首页 > 数理化
概率论与数理统计
概率论与数理统计

概率论与数理统计PDF电子书下载

数理化

  • 电子书积分:10 积分如何计算积分?
  • 作 者:同济大学数学系编著
  • 出 版 社:上海:同济大学出版社
  • 出版年份:2011
  • ISBN:7560845715
  • 页数:212 页
图书介绍:
《概率论与数理统计》目录

1 随机事件与概率 1

1.1 随机事件 1

1.1.1 随机试验 1

1.1.2 样本空间 2

1.1.3 随机事件 2

1.1.4 随机事件之间的关系与运算 3

1.2 等可能概型 6

1.2.1 古典型概率 6

1.2.2 几何型概率 9

1.3 频率与概率 11

1.4 概率的公理化定义与性质 12

1.5 条件概率与随机事件的独立性 15

1.5.1 条件概率 15

1.5.2 随机事件的独立性 18

1.5.3 独立性在可靠性问题中的应用 20

1.5.4 贝努利概型与二项概率 21

1.6 全概率公式与贝叶斯公式 22

习题1 26

2 离散型随机变量及其分布 29

2.1 随机变量 29

2.2 概率函数 31

2.3 常用离散型随机变量 32

2.4 二维随机变量及其分布 37

2.4.1 联合概率函数 37

2.4.2 边缘概率函数 38

2.5 随机变量的独立性 40

2.6 随机变量函数的分布 42

2.6.1 一维随机变量函数的概率函数 42

2.6.2 二维随机变量函数的概率函数 43

习题2 46

3 连续型随机变量及其分布 50

3.1 分布函数 50

3.2 概率密度函数 53

3.3 常用连续型随机变量 56

3.4 二维随机变量及其分布 60

3.4.1 联合密度函数 60

3.4.2 边缘密度函数 62

3.5 随机变量的独立性 65

3.6 随机变量函数的分布 66

3.6.1 一维随机变量函数的密度函数 66

3.6.2 二维随机变量函数的密度函数 69

习题3 73

4 随机变量的数字特征 76

4.1 数学期望 76

4.2 方差与标准差 82

4.3 协方差与相关系数 85

4.4 矩与协方差矩阵 91

习题4 92

5 随机变量序列的极限 95

5.1 切比雪夫不等式 95

5.2 大数定律 97

5.3 中心极限定理 100

习题5 103

6 数理统计的基本概念 105

6.1 直方图与条形图 105

6.2 总体与样本 108

6.3 经验分布函数 111

6.4 统计量 112

6.5 三个常用分布 115

6.6 抽样分布 120

6.6.1 正态总体的情形 120

6.6.2 非正态总体的情形 124

习题6 125

7 参数估计 128

7.1 参数估计问题 128

7.2 两种常用点估计 129

7.2.1 矩估计 129

7.2.2 极大似然估计 131

7.3 估计量的评选标准 135

7.4 置信区间 140

7.5 正态总体下未知参数的置信区间 143

7.5.1 一个正态总体的情形 143

7.5.2 两个正态总体的情形 148

7.6 0-1分布中未知概率的置信区间 151

习题7 153

8 假设检验 157

8.1 假设检验问题 157

8.2 正态总体下未知参数的假设检验 160

8.2.1 一个正态总体的情形 160

8.2.2 两个正态总体的情形 165

8.3 0-1分布中未知概率的假设检验 168

8.4 两类错误 169

8.5 x2拟合优度检验 171

习题8 174

9 回归分析 177

9.1 相关关系问题 177

9.2 一元回归分析 178

9.2.1 线性模型 178

9.2.2 最小二乘法 179

9.2.3 回归系数的显著性检验 183

9.2.4 预测与控制 186

9.3 线性化方法 188

习题9 189

附表 191

附表1 常用分布、记号及数字特征一览表 191

附表2 二项分布的概率函数值表 192

附表3 泊松分布的概率函数值表 194

附表4 标准正态分布函数值及分位数表 196

附表5 x2分布的分位数表 197

附表6 t分布的分位数表 199

附表7 F分布的分位数表 200

附表8 相关系数检验的临界值表 203

习题答案 204

参考文献 212

相关图书
作者其它书籍
返回顶部