当前位置:首页 > 数理化
高等数学  下
高等数学  下

高等数学 下PDF电子书下载

数理化

  • 电子书积分:12 积分如何计算积分?
  • 作 者:夏大峰等编
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2010
  • ISBN:9787040308884
  • 页数:331 页
图书介绍:本教材作为中国国家气象局与南京信息工程大学共建教材的系列成果之一,根据局校共建教材项目的基本要求与编者多年的教学实践与教改经验,结合教育部数学与统计学教学指导委员会制定的“本科数学课程教学基本要求”编写而成。全书分上、下册出版。下册包括向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数等五章。书后还有附录:Matlab简介(下)及习题参考答案等。每节都配有A、B两组习题,每章后附有总复习题,便于教师因材施教与学生自主学习。本书突出重要概念的实际背景和理论知识的应用。全书结构严谨、逻辑清晰、说理浅显、通俗易懂。例题丰富且有一定梯度,便于学生自学。本书可供高等院校理(非数学专业)、工、农、经管各类专业高等数学的教材使用,也可作为工程技术人员的参考书。
《高等数学 下》目录
标签:数学

第八章向量代数与空间解析几何 1

第一节 空间直角坐标系 1

一、空间直角坐标系的概念 1

二、空间两点间的距离 2

习题8-1 4

第二节 向量及其线性运算 4

一、向量的概念 4

二、向量的线性运算 5

三、向量的坐标分解式 9

四、向量的模和方向余弦 11

五、向量在轴上的投影 14

习题8-2 15

第三节 向量的数量积与向量积 16

一、向量的数量积 16

二、向量的向量积 19

习题8-3 23

第四节 曲面及其方程 24

一、曲面方程的概念 24

二、旋转曲面 26

三、柱面 28

习题8-4 29

第五节 空间曲线及其方程 30

一、空间曲线的一般方程 30

二、空间曲线的参数方程 32

三、空间曲线在坐标面上的投影 33

习题8-5 35

第六节 平面及其方程 36

一、平面的点法式方程 36

二、平面的一般方程 37

三、两平面的夹角 39

四、点到平面的距离 41

习题8-6 42

第七节 空间直线及其方程 43

一、空间直线的一般方程 43

二、空间直线的对称式方程与参数方程 43

三、两直线的夹角 45

四、直线与平面的夹角 46

五、平面束 47

习题8-7 49

第八节 二次曲面 50

一、椭球面 50

二、椭圆抛物面 52

三、单叶双曲面 52

四、双叶双曲面 53

五、双曲抛物面(马鞍面) 54

习题8-8 55

总复习题八 56

第九章 多元函数微分法及其应用 59

第一节 多元函数的基本概念 59

一、平面点集 59

二、n维空间(61)三、多元函数的概念 62

四、多元函数的极限 64

五、多元函数的连续性 66

六、闭区域上多元连续函数的性质(67)习题9-1 67

第二节 偏导数 68

一、偏导数的概念及其计算 68

二、高阶偏导数 72

习题9-2 73

第三节 全微分 75

一、全微分的概念 75

二、全微分在近似计算中的应用 78

习题9-3 79

第四节 多元复合函数的微分法 80

一、多元复合函数的求导法则 80

二、全微分形式不变性 84

习题9-4 84

第五节 隐函数的求导公式 85

一、一个方程的情形 85

二、方程组的情形 89

习题9-5 91

第六节 方向导数 梯度 92

一、方向导数 92

二、梯度 94

习题9-6 97

第七节 多元函数微分法在几何上的应用 98

一、空间曲线的切线与法平面 98

二、曲面的切平面与法线 101

习题9-7 104

第八节 多元函数的泰勒公式 104

习题9-8 106

第九节 多元函数的极值及其求法 107

一、多元函数的极值 107

二、多元函数的最大值与最小值 109

三、条件极值与拉格朗日乘数法 111

习题9-9 115

总复习题九 116

第十章 重积分 119

第一节 重积分的概念与性质 119

一、二重积分的概念 119

二、三重积分的概念 121

三、重积分的性质 123

习题10-1 124

第二节 二重积分的计算 126

一、在直角坐标系下计算二重积分 126

二、在极坐标系下计算二重积分 132

三、二重积分的换元法 136

习题10-2 139

第三节 三重积分的计算 141

一、利用直角坐标计算三重积分 141

二、利用柱面坐标计算三重积分 145

三、利用球面坐标计算三重积分 147

四、三重积分的换元法 149

习题10-3 151

第四节 重积分的应用 152

一、曲面的面积 153

二、质心 154

三、转动惯量 157

四、引力 158

习题10-4 160

总复习题十 161

第十一章 曲线积分与曲面积分 165

第一节 对弧长的曲线积分 165

一、对弧长的曲线积分的概念 165

二、对弧长的曲线积分的性质 166

三、对弧长的曲线积分的计算 167

四、对弧长的曲线积分的应用 170

习题11-1 171

第二节 对面积的曲面积分 173

一、对面积的曲面积分的概念 173

二、对面积的曲面积分的性质 174

三、对面积的曲面积分的计算 174

四、对面积的曲面积分的应用 177

习题11-2 179

第三节 对坐标的曲线积分 180

一、对坐标的曲线积分的概念与性质 180

二、对坐标的曲线积分的计算 183

三、两类曲线积分之间的联系 186

习题11-3 188

第四节 格林公式及其应用 189

一、格林公式 190

二、平面上曲线积分与路径无关的条件 193

三、全微分方程 197

习题11-4 198

第五节 对坐标的曲面积分 200

一、对坐标的曲面积分的概念 200

二、对坐标的曲面积分的性质 204

三、对坐标的曲面积分的计算 204

四、两类曲面积分之间的联系 207

习题11-5 210

第六节 高斯公式 通量与散度 211

一、高斯公式 211

二、通量与散度 214

习题11-6 216

第七节 斯托克斯公式 环流量与旋度 217

一、斯托克斯公式 218

二、环流量与旋度 221

习题11-7 223

第八节 场论初步 224

一、区间上的向量函数 224

二、向量场 227

习题11-8 231

总复习题十一 231

第十二章 无穷级数 234

第一节 常数项级数的概念和性质 234

一、常数项级数的概念 234

二、收敛级数的基本性质 237

三、柯西审敛原理 240

习题12-1 240

第二节 常数项级数的审敛法 241

一、正项级数的审敛法 241

二、交错级数及其审敛法 248

三、绝对收敛与条件收敛 250

习题12-2 252

第三节 幂级数 254

一、函数项级数的概念 254

二、幂级数及其收敛性 255

三、幂级数的运算 259

习题12-3 261

第四节 函数展开成幂级数 262

一、泰勒级数 263

二、函数展开成幂级数 265

三、函数的幂级数展开式的应用 270

习题12-4 272

第五节 傅里叶级数 272

一、三角级数的概念 272

二、周期为2π的周期函数展开成傅里叶级数 274

三、正弦级数和余弦级数 280

习题12-5 283

第六节 周期为2l的周期函数的傅里叶级数 285

一、周期为2l的函数展开成傅里叶级数 285

二、傅里叶级数的复数形式 287

习题12-6 289

总复习题十二 290

附录V MATLAB简介(下) 293

习题参考答案 303

相关图书
作者其它书籍
返回顶部