当前位置:首页 > 数理化
数学物理方程  试用本
数学物理方程  试用本

数学物理方程 试用本PDF电子书下载

数理化

  • 电子书积分:10 积分如何计算积分?
  • 作 者:复旦大学数学系编著
  • 出 版 社:上海:上海科学技术出版社
  • 出版年份:1960
  • ISBN:13119·361
  • 页数:221 页
图书介绍:
上一篇:曲面拓扑学下一篇:李群基础
《数学物理方程 试用本》目录

第一章 绪论 1

1 引言 1

2 典型方程的导出及定解问题 3

3 广义解的概念 12

4 二阶线性方程的分类 16

第二章 积分变换 23

1 积分变换 23

2 富里埃变换 25

3 拉普拉斯变换 29

4 积分变换在数学物理问题中的应用 37

第三章 基本解 影响函数 50

1 δ-函数 50

2 基本解 55

3 柯西问题的基本解 60

4 格林函数 共轭微分算子 67

5 黎曼方法 76

6 基本解与方程的一些性质 85

第四章 分离变量法 89

1 弦振动方程 89

2 分离变量的一般方法 93

3 举例 101

第五章 极值原则和能量积分 109

1 椭圆型方程的极值原则及其应用 109

2 拉普拉斯方程的狄利克莱外问题和牛曼外问题 115

3 抛物型方程的极值原则 120

4 能量积分 123

第六章 数学物理中的变分方法 135

1 问题的提出 135

2 自共轭边值问题 138

3 波阿松方程和拉普拉斯方程的基本边值问题 重调和方程 146

4 吕兹方法 159

5 吕兹方法在特征值问题上的应用 164

6 迦辽金方法 174

第七章 混合型方程 183

1 问题的提出 183

2 问题T的存在定理 185

3 极值原理及T问题的唯一性 191

第八章 一阶偏微分方程组 195

1 方程组的柯娃列夫斯卡娅定理 195

2 特征理论 197

3 柯西问题 201

4 线性双曲型方程组的其他边值问题 208

5 可化约系统 速度图 213

6 单波 217

相关图书
作者其它书籍
返回顶部