当前位置:首页 > 数理化
简明微积分  第3版
简明微积分  第3版

简明微积分 第3版PDF电子书下载

数理化

  • 电子书积分:19 积分如何计算积分?
  • 作 者:龚升,张声雷编
  • 出 版 社:合肥:中国科学技术大学出版社
  • 出版年份:1976
  • ISBN:7312009204
  • 页数:653 页
图书介绍:
《简明微积分 第3版》目录
标签:微积分

第一章 微积分的概念 1

1.1 函数与极限 1

1.1.1 数列极限与函数极限 1

1.1.2 连续函数 2

1.2 定积分 7

1.2.1 计算面积 7

1.2.2 定积分的定义 11

1.2.3 对数函数y=lnx 18

1.3.1 曲线的切线 23

1.3 微商与微分 23

1.3.2 速度、密度 24

1.3.3 微商的定义 26

1.3.4 微分 30

1.4 微积分基本定理 33

第二章 微积分的运算 39

2.1 微分法 39

2.1.1 微商与微分的计算 39

2.1.2 高阶微商与高阶微分 49

2.1.3 利用微分作近似计算 53

2.2.1 不定积分的计算 61

2.2 积分法 61

2.2.2 定积分的计算 81

2.2.3 定积分的近似计算 88

第三章 微积分的一些应用 95

3.1 面积、体积、弧长 95

3.1.1 面积 95

3.1.2 体积 98

3.1.3 弧长 100

3.2 曲线的描绘 104

3.2.1 函数图形的上升和下降 105

3.2.2 函数图形的凹与凸 106

3.2.3 曲线的渐近线 108

3.2.4 描绘图形的例子 111

3.2.5 曲率 114

3.3 Taylor(泰勒)展开与极值问题 118

3.3.1 Taylor(泰勒)展开式 118

3.3.2 极值问题 123

3.4 物理应用举例 134

第四章 常微分方程 140

4.1 一阶微分方程 140

4.1.1 概念 140

4.1.2 分离变量 143

4.1.3 线性方程 151

4.2 二阶微分方程 156

4.2.1 可降价的方程 156

4.2.2 二阶线性方程 160

4.2.3 常系数线性方程 168

4.2.4 质点振动 182

4.2.5 常微分方程组 188

5.1 空间直角坐标系与矢量 196

5.1.1 直角坐标系 196

第五章 矢量代数与空间解析几何 196

5.1.2 矢量的加法与数乘 198

5.2 矢量的乘积 203

5.2.1 矢量的内积 203

5.2.2 矢量的外积 205

5.2.3 矢量的混合积 208

5.3 平面与直线 211

5.3.1 平面方程 211

5.3.2 直线方程 215

5.4 二次曲面 219

5.4.1 柱面 219

5.4.2 旋转曲面 221

5.4.3 锥面 223

5.4.4 椭球面 224

5.4.5 双曲抛物面 225

5.4.6 单叶双曲面 227

5.4.7 双叶双曲面 227

5.4.8 椭圆抛物面 227

5.5 坐标变换 229

5.5.1 坐标系的平移 229

5.5.2 坐标系的旋转 230

6.1.1 多变量函数的极限与连续性 235

6.1 重积分 235

第六章 重积分与偏微商 235

6.1.2 重积分的概念 238

6.1.3 重积分的计算 242

6.2 偏微商 253

6.2.1 偏微商与全微分 253

6.2.2 隐函数的微商 262

6.3 Jacobi(雅可比)行列式、面积元素与体积元素 278

6.3.1 Jacobi(雅可比)行列式的性质 278

6.3.2 面积元素与体积元素 280

7.1.1 数量场的等值面与梯度 298

7.1 数量场与矢量场 298

第七章 线、面积分与外微分形式 298

7.1.2 矢量场的流线 302

7.2 曲线积分 307

7.2.1 第一种曲线积分(关于弧长的曲线积分) 307

7.2.2 第一种曲线积分的应用(旋转曲面的面积) 310

7.2.3 第二种曲线积分(关于弧长元素投影的积分) 312

7.2.4 第二种曲线积分的计算方法 315

7.2.5 两种曲线积分的关系 318

7.2.6 矢量场的环流量,矢量的曲线积分 319

7.3.1 第一种曲面积分(关于面积元素的曲面积分) 324

7.3 曲面积分 324

7.3.2 矢量场的通量,第二种曲面积分(关于面积元素投影的积分) 327

7.3.3 第二种曲面积分的计算方法 330

7.4 Stokes公式 336

7.4.1 Green公式 336

7.4.2 Gauss公式、散度 339

7.4.3 Stokes公式、旋度 345

7.5 全微分与线积分 354

7.5.1 与途径无关的曲线积分 354

7.5.2 有势场 358

7.5.3 管型场 360

7.6.1 外乘积、外微分形式 364

7.6 外微分形式 364

7.6.2 外微分运算,Poincaré引理及其逆 371

7.6.3 梯度、旋度与散度的数学意义 377

7.6.4 多变量微积分的基本定理(Stokes公式) 379

第八章 多变量微积分的一些应用 383

8.1 Taylor(泰勒)展开与极值问题 383

8.1.1 多变量函数的Taylor展开 383

8.1.2 多变量函数的极值问题 384

8.1.3 条件极值问题 389

8.2.1 重心、转动惯量与引力 395

8.2 物理上的应用举例 395

8.2.2 流体动力学的完全方程组 401

8.2.3 声的传播 404

8.2.4 热的传导 406

第九章 ε-δ语言 410

9.1 数列极限的ε-N语言 410

9.1.1 数列极限的定义 410

9.1.2 数列极限的一些性质 412

9.1.3 极限存在的判别准则 415

9.2.1 连续趋限 424

9.2 函数连续性的ε-δ语言 424

9.2.2 连续函数的定义 431

9.2.3 连续函数的一些基本性质 434

9.2.4 函数的一致连续性 436

9.3 定积分的存在性 443

9.3.1 Darboux和 443

9.3.2 连续函数的可积性 445

9.3.3 定积分概念的推广 450

10.1 数项级数 458

10.1.1 基本概念 458

第十章 无穷级数与无穷积分 458

10.1.2 一些收敛判别法 460

10.1.3 条件收敛级数 466

10.2 函数项级数 475

10.2.1 无穷次相加产生的问题 475

10.2.2 一致收敛函数列 477

10.2.3 一致收敛函数项级数 481

10.2.4 隐函数存在定理 485

10.2.5 常微分方程解的存在性与唯一性 490

10.3 幂级数与Taylor级数 498

10.3.1 幂级数的收敛半径 498

10.3.2 幂级数的性质 501

10.3.3 Taylor级数 506

10.3.4 幂级数的应用 514

10.4 无穷积分与含参变量积分 528

10.4.1 无穷积分的收敛判别法 528

10.4.2 含参变量的积分 540

10.4.3 含参变量的无穷积分 545

10.4.4 几个重要的无穷积分 559

11.1 Fourier级数 573

11.1.1 三角函数系的正交性 573

第十一章 Fourier级数与Fourier积分 573

11.1.2 Bessel不等式 583

11.1.3 Fourier级数的收敛判别法 585

11.2 Fourier积分 592

11.2.1 Fourier积分 592

11.2.2 Fourier变换 594

11.2.3 Fourier变换的应用 599

11.2.4 高维Fourier变换 601

习题答案 603

后记 650

附:本书讲授学时分配数 652

相关图书
作者其它书籍
返回顶部