高等微积分 第2版PDF电子书下载
- 电子书积分:17 积分如何计算积分?
- 作 者:(美)菲茨帕特里克(FitzpatrickP.M.),马里兰大学著
- 出 版 社:北京:机械工业出版社
- 出版年份:2006
- ISBN:7111193490
- 页数:590 页
Preliminaries 1
1 TOOLS FOR ANALYSIS 5
1.1 The Completeness Axiom and Some of Its Consequences 5
1.2 The Distribution of the Integers and the Rational Numbers 12
1.3 Inequalities and Identities 16
2 CONVERGENT SEQUENCES 23
2.1 The Convergence of Sequences 23
2.2 Sequences and Sets 35
2.3 The Monotone Convergence Theorem 38
2.4 The Sequential Compactness Theorem 43
2.5 Covering Properties of Sets 47
3 CONTINUOUS FUNCTIONS 53
3.1 Continuity 53
3.2 The Extreme Value Theorem 58
3.3 The Intermediate Value Theorem 62
3.4 Uniform Continuity 66
3.5 The∈-δ Criterion for Continuity 70
3.6 Images and Inverses;Monotone Functions 74
3.7 Limits 81
4 DIFFERENTIATION 87
4.1 The Algebra of Derivatives 87
4.2 Differentiating Inverses and Compositions 96
4.3 The Mean Value Theorem and Its Geometric Consequences 101
4.4 The Cauchy Mean Value Theorem and Its Analytic Consequences 111
4.5 The Notation of Leibnitz 113
5 ELEMENTARY FUNCTIONS AS SOLUTIONS OF DIFFERENTIAL EQUATIONS 116
5.1 Solutions of Differential Equations 116
5.2 The Natural Logarithm and Exponential Functions 118
5.3 The Trigonometric Functions 125
5.4 The Inverse Trigonometric Functions 132
6 INTEGRATION:TWO FUNDAMENTAL THEOREMS 135
6.1 Darboux Sums;Upper and Lower Integrals 135
6.2 The Archimedes-Riemann Theorem 142
6.3 Additivity,Monotonicity,and Linearity 150
6.4 Continuity and Integrability 155
6.5 The First Fundamental Theorem:Integrating Derivatives 160
6.6 The Second Fundamental Theorem:Differentiating Integrals 165
7 INTEGRATION:FURTHER TOPICS 175
7.1 Solutions of Differential Equations 175
7.2 Integration by Parts and by Substitution 178
7.3 The Convergence of Darboux and Riemann Sums 183
7.4 The Approximation of Integrals 190
8 APPROXIMATION BY TAYLOR POLYNOMIALS 199
8.1 Taylor Polynomials 199
8.2 The Lagrange Remainder Theorem 203
8.3 The Convergence of Taylor Polynomials 209
8.4 A Power Series for the Logarithm 212
8.5 The Cauchy Integral Remainder Theorem 215
8.6 A Nonanalytic,Infinitely Differentiable Function 221
8.7 The Weierstrass Approximation Theorem 223
9 SEQUENCES AND SERIES OF FUNCTIONS 228
9.1 Sequences and Series of Numbers 228
9.2 Pointwise Convergence of Sequences of Functions 241
9.3 Uniform Convergence of Sequences of Functions 245
9.4 The Uniform Limit of Functions 249
9.5 Power Series 255
9.6 A Continuous Nowhere Differentiable Function 264
10 THE EUCLIDEAN SPACE Rn 269
10.1 The Linear Structure of Rn and the Scalar Product 269
10.2 Convergence of Sequences in Rn 277
10.3 Open Sets and Closed Sets in Rn 282
11 CONTINUITY,COMPACTNESS,AND CONNECTEDNESS 290
11.1 Continuous Functions and Mappings 290
11.2 Sequential Compactness,Extreme Values,and Uniform Continuity 298
11.3 Pathwise Connectedness and the Intermediate Value Theorem 304
11.4 Connectedness and the Intermediate Value Property 310
12 METRIC SPACES 314
12.1 Open Sets,Closed Sets,and Sequential Convergence 314
12.2 Completeness and the Contraction Mapping Principle 322
12.3 The Existence Theorem for Nonlinear Differential Equations 328
12.4 Continuous Mappings between Metric Spaces 337
12.5 Sequential Compactness and Connectedness 342
13 DIFFERENTIATING FUNCTIONS OF SEVERAL VARIABLES 348
13.1 Limits 348
13.2 Partial Derivatives 353
13.3 The Mean Value Theorem and Directional Derivatives 364
14 LOCAL APPROXIMATION OF REAL-VALUED FUNCTIONS 372
14.1 First-Order Approximation,Tangent Planes,and Affine Functions 372
14.2 Quadratic Functions,Hessian Matrices,and Second Derivatives 380
14.3 Second-Order Approximation and the Second-Derivative Test 387
15 APPROXIMATING NONLINEAR MAPPINGS BY LINEAR MAPPINGS 394
15.1 Linear Mappings and Matrices 394
15.2 The Derivative Matrix and the Differential 407
15.3 The Chain Rule 414
16 IMAGES AND INVERSES:THE INVERSE FUNCTION THEOREM 421
16.1 Functions of a Single Variable and Maps in the Plane 421
16.2 Stability of Nonlinear Mappings 429
16.3 A Minimization Principle and the General Inverse Function Theorem 433
17 THE IMPLICIT FUNCTION THEOREM AND ITS APPLICATIONS 440
17.1 A Scalar Equation in Two Unknowns:Dini's Theorem 440
17.2 The General Implicit Function Theorem 449
17.3 Equations of Surfaces and Paths in R3 454
17.4 Constrained Extrema Problems and Lagrange Multipliers 460
18 INTEGRATING FUNCTIONS OF SEVERAL VARIABLES 470
18.1 Integration of Functions on Generalized Rectangles 470
18.2 Continuity and Integrability 482
18.3 Integration of Functions on Jordan Domains 489
19 ITERATED INTEGRATION AND CHANGES OF VARIABLES 498
19.1 Fubini's Theorem 498
19.2 The Change of Variables Theorem:Statements and Examples 505
19.3 Proof of the Change of Variables Theorem 510
20 LINE AND SURFACE INTEGRALS 520
20.1 Arclength and Line Integrals 520
20.2 Surface Area and Surface Integrals 533
20.3 The Integral Formulas of Green and Stokes 543
A CONSEQUENCES OF THE FIELD AND POSITIVITY AXIOMS 559
A.1 The Field Axioms and Their Consequences 559
A.2 The Positivity Axioms and Their Consequences 563
B LINEAR ALGEBRA 565
Index 581
- 《微积分》韩孺眉,王琳忠,盛晓娜主编 2018
- 《考研轻松学 微积分的奥秘 数学三 上》中公教育研究所考试考试研究院编著 2019
- 《微积分》王青主编 2019
- 《微积分学习题册 (与《一元分析学》《多元分析学》配套)》黄永忠,韩志斌,雷冬霞编 2019
- 《微积分》尹逊波,尤超,李莉编 2019
- 《轻松学点微积分》卓永鸿编著 2020
- 《GEOGEBRA可视化与微积分教学》汪吉著 2019
- 《微积分学 上册 第4版》华中科技大学数学与统计学院编 2019
- 《微积分》姚志鹏,何丹,崔唯主编;陈盛双主审 2018
- 《奖分制管理 积分制管理升级版》思翰著 2018
- 《SQL与关系数据库理论》(美)戴特(C.J.Date) 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《看漫画学钢琴 技巧 3》高宁译;(日)川崎美雪 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《优势谈判 15周年经典版》(美)罗杰·道森 2018
- 《社会学与人类生活 社会问题解析 第11版》(美)James M. Henslin(詹姆斯·M. 汉斯林) 2019
- 《海明威书信集:1917-1961 下》(美)海明威(Ernest Hemingway)著;潘小松译 2019
- 《迁徙 默温自选诗集 上》(美)W.S.默温著;伽禾译 2020
- 《上帝的孤独者 下 托马斯·沃尔夫短篇小说集》(美)托马斯·沃尔夫著;刘积源译 2017
- 《巴黎永远没个完》(美)海明威著 2017
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《高等教育双机械基础课程系列教材 高等学校教材 机械设计课程设计手册 第5版》吴宗泽,罗圣国,高志,李威 2018
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019
- 《中国十大出版家》王震,贺越明著 1991
- 《近代民营出版机构的英语函授教育 以“商务、中华、开明”函授学校为个案 1915年-1946年版》丁伟 2017
- 《新工业时代 世界级工业家张毓强和他的“新石头记”》秦朔 2019
- 《智能制造高技能人才培养规划丛书 ABB工业机器人虚拟仿真教程》(中国)工控帮教研组 2019
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019