微积分学 英文PDF电子书下载
- 电子书积分:11 积分如何计算积分?
- 作 者:张凤玲,姚妙新,张玉环编著
- 出 版 社:天津:天津大学出版社
- 出版年份:2001
- ISBN:7561814607
- 页数:253 页
1 Functions 1
1.1 Sets 1
1.1.1 Definition of Set 1
1.1.2 Operations upon Sets 1
1.1.3 The Set of Real Numbers 2
1.2 Functions 3
1.2.1 Definition 3
1.2.2 Some Properties of Functions 4
1.3 Composite Functions and Inverse Functions 6
1.3.1 Composite Functions 6
1.3.2 Inverse Functions 8
1.4 Elementary Functions 9
1.4.1 Constant functions 9
1.4.2 Power functions 9
1.4.3 Exponential functions 10
1.4.4 Logarithmic functions 10
1.4.5 Trigonometric functions 10
1.4.6 Anti-trigonometric functions 12
1.5 Exercises 12
2 Limits and Continuity 15
2.1 Limits of Sequences 15
2.1.1 Definition 15
2.2 Limits of Functions 18
2.2.1 A Limit of a Function f(x)as x Tends to a Real Number x0 18
2.2.2 Limits Involving Infinity 23
2.3 Techniques for Finding Limits 27
2.4 Continuous Functions 33
2.5 Exercises 39
3 The Derivative 43
3.1 Tangent lines and Rates of Change 43
3.2 Definition of Derivative 46
3.3 Differentiation Formulas 49
3.4 Derivatives of Logarithmic Functions 52
3.5 Derivatives of Trigonometric Functions 53
3.6 The Chain Rule 56
3.7 Derivatives of Inverse Functions and Implicit Differentiation 59
3.8 Higher Derivatives 64
3.9 Differentials and Linear Approximations 65
3.9.1 Diffcrentials 65
3.9.2 Linear Approximations 67
3.10 Exercises 68
4 Applications of Derivative 71
4.1 The Mean Value Theorem 71
4.2 Indeterminate Forms and L HOSPITAL S Rule 74
4.2.1 The Forms 0/0 and ∞/∞ 74
4.2.2 The Forms 0·∞,00, ∞0,1∞ and ∞-∞ 76
4.3 Monotonic Functions 78
4.4 Concavity and Points of Inflection 80
4.5 Extrema of Functions 83
4.6 Applications to Economics 89
4.7 Exercises 92
5 Indefinite Integrals 95
5.1 Antiderivatives and the Indefinite Integral 95
5.2 Substitution Rules 100
5.3 Integration by Parts 106
5.4 Exercises 110
6 Definite Integrals 113
6.1 Area and the Definite Integral 113
6.2 Properties of the Definite Integral 117
6.3 The Fundamental Theorem of Calculus 121
6.4 Techniques of Integration 125
6.4.1 Formula for integration by substitution 125
6.4.2 Formula for integration by parts 126
6.5 Improper Integrals 127
6.5.1 Type 1:Infinite Intervals 127
6.5.2 Type 2:Discontinuous Integrand 131
6.6 Exercises 133
7 Applications of Definite Integrals 137
7.1 Area between Curves 137
7.2 Volume 140
7.3 Are Length 144
7.4 Area of a Surface of Revolution 148
7.5 Work 150
7.6 Applications in Business and Economics 151
7.6.1 Continuous Income Stream 152
7.6.2 Consumers and Producers Surplus 152
7.7 Exercises 156
8 Series 159
8.1 Numerical Series 159
8.1.1 Fundamental Concepts 159
8.1.2 Elementary Properties 160
8.1.3 Infinite Series of Nonnegative Terms 162
8.1.4 Alternating Series 164
8.1.5 Absolute and Conditional Convergence 165
8.2 Functional Series 167
8.2.1 Power Series 168
8.2.2 Properties of Power Series 170
8.3 Taylor Series 171
8.4 Exercises 174
9 Vector Algebra and Space Ana?ytic Geometry 177
9.1 Rectangular Coordinates in Space 177
9.2 Vector Algebra 179
9.2.1 Operations of Vectors 179
9.2.2 The Coordinates of a Vector 181
9.2.3 The Scalar Product 185
9.2.4 The Vector Product 187
9.3 The Planes and Lines in Space 189
9.3.1 The Point-Normal Form Equations of a Plane 189
9.3.2 Distance from a Point to a Plane 190
9.3.3 The Angle between Two Planes 191
9.3.4 The General Equation of a Line in Space 192
9.3.5 Equations of a Line 192
9.3.6 The Angle between Two Lines 193
9.4 Equations for a Surface or a Curve 194
9.4.1 The Equation for a Sphere 194
9.4.2 The Equation of a Cylindrical Surface with Generators Paralleling to a Coordinate Axis 194
9.4.3 Equation for the Intersection of Two Curved Surfaces 195
9.4.4 The Parametric Equation of a Space Curve 196
9.4.5 Equation for the Projecting Curve on a Coordinate Plane of a Space Curve 196
9.5 Surfaces of Revolution 197
9.6 Quadratic Surfaces 198
9.6.1 Ellipsoids 198
9.6.2 Hyperboloids of One Sheet 199
9.6.3 Hyperboloids of Two Sheets 199
9.6.4 Quadratic Cones 200
9.6.5 Paraboloids 201
9.6.6 Quadratic Cylinders 201
9.7 Exercises 202
10 Functions of Several Variables 203
10.1 Fundamental Concepts 203
10.2 Limits and Continuity 205
10.3 Partial Derivatives 207
10.4 The Chain Rule 211
10.5 Approximation and Total Differential 215
10.6 Applications of Partial Derivatives 217
10.6.1 Geometric App?ication 217
10.6.2 Extreme Values of Functions of Two Variables 221
10.7 Exercises 228
11 Multiple Integrals 231
11.1 Double Integrals 231
11.2 Properties of Double Integral 232
11.3 Evaluation of Double Integrals 235
11.4 Triple Integrals 240
11.4.1 The Mass of an Object of Nonhomogeneous Density 240
11.4.2 The Definition of Triple Integral 240
11.4.3 Evaluation of Triple Integrals in Rectangular Coordinates 241
11.5 Exercises 244
- 《微积分》韩孺眉,王琳忠,盛晓娜主编 2018
- 《考研轻松学 微积分的奥秘 数学三 上》中公教育研究所考试考试研究院编著 2019
- 《微积分》王青主编 2019
- 《微积分学习题册 (与《一元分析学》《多元分析学》配套)》黄永忠,韩志斌,雷冬霞编 2019
- 《微积分》尹逊波,尤超,李莉编 2019
- 《轻松学点微积分》卓永鸿编著 2020
- 《GEOGEBRA可视化与微积分教学》汪吉著 2019
- 《微积分学 上册 第4版》华中科技大学数学与统计学院编 2019
- 《微积分》姚志鹏,何丹,崔唯主编;陈盛双主审 2018
- 《奖分制管理 积分制管理升级版》思翰著 2018
- 《市政工程基础》杨岚编著 2009
- 《家畜百宝 猪、牛、羊、鸡的综合利用》山西省商业厅组织技术处编著 1959
- 《《道德经》200句》崇贤书院编著 2018
- 《高级英语阅读与听说教程》刘秀梅编著 2019
- 《计算机网络与通信基础》谢雨飞,田启川编著 2019
- 《看图自学吉他弹唱教程》陈飞编著 2019
- 《法语词汇认知联想记忆法》刘莲编著 2020
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《国家社科基金项目申报规范 技巧与案例 第3版 2020》文传浩,夏宇编著 2019
- 《羊脂球 莫泊桑短篇小说选》(法)莫泊桑著;张英伦译 2010
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《大学化学实验》李爱勤,侯学会主编 2016
- 《中国十大出版家》王震,贺越明著 1991
- 《近代民营出版机构的英语函授教育 以“商务、中华、开明”函授学校为个案 1915年-1946年版》丁伟 2017