当前位置:首页 > 数理化
微积分
微积分

微积分PDF电子书下载

数理化

  • 电子书积分:9 积分如何计算积分?
  • 作 者:张秋燕,李海艳主编;严峻,张诗静副主编
  • 出 版 社:北京:科学出版社
  • 出版年份:2015
  • ISBN:9787030451439
  • 页数:175 页
图书介绍:本书内容:函数、极限与连续,导数与微分,导数的应用,不定积分,定积分,多元函数微分学,数学实验函数、极限与连续,导数与微分,导数的应用,不定积分,定积分,多元函数微分学,数学实验函数、极限与连续,导数与微分,导数的应用,不定积分,定积分,多元函数微分学,数学实验。
上一篇:“鬼火”的真相下一篇:高等数学
《微积分》目录
标签:主编 微积分

第1章 函数、极限与连续 1

1.1 函数的相关概念 1

1.1.1 集合 1

1.1.2 函数 3

1.1.3 反函数 6

1.1.4 基本初等函数 7

1.1.5 复合函数 10

1.1.6 初等函数 11

1.2 极限的概念 12

1.2.1 数列的极限 12

1.2.2 函数的极限 14

1.3 极限的运算法则 17

1.3.1 极限的四则运算法则 17

1.3.2 复合函数的极限运算法则 19

1.4 极限存在准则两个重要极限 20

1.4.1 夹逼法则 20

1.4.2 单调有界收敛法则 22

1.5 无穷大与无穷小 25

1.5.1 无穷小 25

1.5.2 无穷大 26

1.5.3 无穷小的比较 27

1.6 函数的连续性 30

1.6.1 函数连续性的概念 31

1.6.2 间断点及分类 33

1.6.3 连续函数的运算法则和初等函数的连续性 35

1.6.4 闭区间上连续函数的性质 36

1.7 应用实例 37

单元检测1 38

第2章 导数与微分 40

2.1 导数的概念 40

2.1.1 引例 40

2.1.2 导数的定义 41

2.1.3 函数的可导性与连续性的关系 45

2.2 函数的求导法则 46

2.2.1 四则运算法则 46

2.2.2 反函数的求导法则 47

2.2.3 复合函数求导法则 48

2.2.4 初等函数的导数 48

2.3 隐函数及参数方程所确定的函数的导数 50

2.3.1 隐函数的导数 50

2.3.2 参数方程所确定的函数的导数 52

2.4 高阶导数 53

2.5 微分及其应用 56

2.5.1 微分定义及几何意义 56

2.5.2 微分公式及运算法则 58

2.5.3 微分在近似计算中的应用 60

2.6 应用实例 61

单元检测2 63

第3章 导数的应用 65

3.1 中值定理 65

3.1.1 罗尔定理 65

3.1.2 拉格朗日中值定理 66

3.1.3 柯西中值定理 67

3.2 洛必达法则 68

3.2.1 0/0型和∞/∞型未定式 68

3.2.2 其他类型的未定式 70

3.3 函数的单调性与极值 73

3.3.1 函数单调性的判别法 73

3.3.2 函数的极值及其求法 75

3.3.3 函数的最值 78

3.4 函数的凹凸性、拐点与函数作图 79

3.4.1 函数的凹凸性与拐点 80

3.4.2 函数作图 81

3.5 应用实例 83

单元检测3 85

第4章 不定积分 86

4.1 不定积分的概念与性质 86

4.1.1 原函数与不定积分 86

4.1.2 不定积分的几何意义 87

4.1.3 不定积分的性质 88

4.1.4 基本积分公式 88

4.2 换元积分法 91

4.2.1 第一类换元积分法(凑微分法) 91

4.2.2 第二类换元法 95

4.3 分部积分法 100

4.4 应用实例 104

单元检测4 107

第5章 定积分 109

5.1 定积分的概念与性质 109

5.1.1 引例 109

5.1.2 定积分的概念 111

5.1.3 定积分的性质 114

5.2 微积分基本定理 116

5.2.1 积分上限函数及其导数 117

5.2.2 原函数存在定理 118

5.2.3 牛顿-莱布尼茨公式 119

5.3 定积分的计算 121

5.3.1 定积分的换元积分法 121

5.3.2 定积分的分部积分法 123

5.4 定积分的几何应用 125

5.4.1 定积分的元素法 125

5.4.2 平面图形的面积 126

5.4.3 旋转体的体积 127

5.5 定积分的其他应用实例 129

单元检测5 131

第6章 多元函数微积分学 133

6.1 多元函数的基本概念 133

6.1.1 区域 133

6.1.2 多元函数的概念 133

6.1.3 二元函数的极限与连续 134

6.2 偏导数与全微分 135

6.2.1 偏导数的定义及其计算 135

6.2.2 高阶偏导数 137

6.2.3 全微分 138

6.3 复合函数与隐函数的求导方法 141

6.3.1 多元复合函数的求导法则 141

6.3.2 隐函数的求导公式 143

6.4 二元函数的极值 144

6.4.1 二元函数极值的定义 144

6.4.2 条件极值与拉格朗日乘数法 146

6.5 二重积分 148

6.5.1 二重积分的概念与性质 148

6.5.2 二重积分的计算 151

单元检测6 162

部分习题参考答案 164

参考文献 164

返回顶部